
AD-ADAS 26COOAOUVATOUDREPOFCMUESCEC I9/
FSCAN REPORT AND USER*S MANUAL.(V
NOV 79 6 M CLEMM DAAG29-76-fi-006

CUNCLASSIFIED CU-CS-166-79 ARD 1507412-M NL

7 DA8 0 OORDm NVA OLDRDP CMUER SCIEN EE ..9/

1j.5 12 15
L
I..

11111-2 -4 U .6

PAeRO'COPY RESOLUTION TEST CHART

NATIONAL ALIAEAIOF 0(IANDARDM 196 A

AA

L~ -jL

FSCAN Report and User's Manual

by

Geoffrey M. Clemm
Department of Computer Science

University of Colorado at Boulder
Boulder, Colorado 80309

CU-CS-166-79 November, 1979

INTERIM TECHNICAL REPORT

U.S. ARMY RESEARCH OFFICE

CONTRACT NO. DAAG29-78-G-0046

Approved for public release;
Distribution Unlimited

IL
[

THE FINDINGS IN THIS REPORT ARE NOT TO

BE CONSTRUED AS AN OFFICIAL DEPARTMENT

OF THE ARMY POSITION, UNLESS SO DESIG-

NATED BY OTHER AUTHORIZED DOCUMENTS.

We acknowledge U. S. Army Research support
under contract no. DAAG29-78-G-0046 and
National Science Foundation support under
grant no. MCS77-02194.

SE Vl CLASSIFICATION OW THIS PAGE EJVI DIl Ent.

/REPORT DOCUIAENTATION PAGE REA 24TWT
UHRKL--.,/ -P.3OVT ACCEKSSIONI NO. II 61-ilR CATALOG NU89

_ FSCAReport and User's Manual.

I.~('UT40 0. CONTAACT Oil GRANT 111401081

rey -/DAAG29 78-G-464!,

3. eRFORIN ORAIRTON NINE AND ADDRESS " RJC.TS

IS. CONTROLTIONG OFICT AME N eee eADES r le S ffe~ e ~ot

lexca anlyis parers pesarsin Ofcfnice ovmiers,
Pstatfice progra analysi

ICA is010010 a09C lNgAE 6o ADRspec ifin then lexiclftaalysis ISEUTYA.(of porM rte in

tokenso(eicalui) Thee; omieribandonInterprteadesgeo otbl

Bot7ar wISRITeNi STAI[H FORTRAN (1966)e suppea lemented by1119 "a smllnube osor

mahe depndens n thubrouies.taenttob osreanofca
Deprmn of 1the EDITIO OF iton unes NOoS deSig ncassifioer

SsCatIc prAGEa analysisl

L.ASRC CIiheeotwe iei e~e dIM~ F6" ebr

Abstract

FSCA I is a language for specifying the lexical analysis of program

written in any current programming language, including FORTRAN. This

report describes the FSCAN language, a compiler for the language, and

an interpreter for the resulting object code. The interpreted ob-

ject code forms an efficient lexical analyzer that takes as input a

stream of characters and produces as output a stream of tokens (lexical

units). The compiler and interpreter are designed for portability'
Both are written in ANS FORTRAN (1966) supplemented by a small number

of short machine dependent subroutines.

* jj '

CONTENTS

1. Introducton .1......................

2. The Language..2
2.1 Programs and Procedures 2

2.2 Rules .. 3
2.3 FSCAN Regular Expressions......................... 5

2.4 Actions .. 8
2.5 Commients..8

3. The ComnpilIer..9
3.1 Lexical Analysis, Syntactic Analysis, and Tree
Construction......................................9

3.2 Symbol Identification g9
3.3 Character Set Creation 10

3.4 Tree Threading 10
3.5 Code Generation.................................10
3.6 Code Verification............................... 11
3.7 Code Assembly and Optimization 11

3.8 Code Output 11

4. The Object Code Interpreter 12

4.1 Input Interface 12

4.2 Output Interface................................ 12
4.3 Errors Reported by the Interpreter................ 13

5. FSCAN-Subset Object Code Interpreter.................. 15
5.1 Input Interface.................................15

5.2 Output Interface................................ 15
5.3 Errors Reported by the Interpreter 15

6. Acknowledgment..................................... 17

Appendix A... 19

Appendix 8B.. 22

Appendix C ... 2

Appendix D... 25

Appendix E. ... 26

Appendix F.. 27

V.

1. INTRODUCTION

The first phase of the analysis of a computer program is "lexical

analysis" or "scanning," where the source text is broken up into the

words or "tokens" of the programing language. For most languages this

is a relatively straightforward task, as spaces or some other delimiter

are required at any token separation points that could be ambiguous.

Unfortunately the ANSI FORTRAN standardt specifies that spaces for the

most part are meaningless in FORTRAN programs [1]. This creates leveral

ambiguous situations that cannot without backtracking be resolved by a

left-to-right scan with single character look-ahead of the source test.

For example, if the string "DO" has been read, it is unclear whether the

scan has reached the end of the keyword, "DO", in a statement such as

DO 10 = 1, 3

or whether the scan is in the middle of a variable name in a statement

such as

DO10I = 1 + X

The problem of the lexical analysis of FORTRAN is further complicated

by the existence of numerous dialects and extensions of FORTRAN that vary

according to the installation and particular compiler in use. The pro-

blem is therefore most acute for a system such as the DAVE software

validation system [2] where it is desirable that all variants of FORTRAN

be readable. Ordinarily this would entail recoding the lexical analyzer

module for each new FORTRAN variant, in addition to maintaining a library

of already coded lexical analyzer modules.

To minimize these tasks, the FSCAN (Fortran SCANner) Lexical

Analyzer Generating System was developed. The FSCAN system consists of a

language, a compiler for the language, and an interpreter for the object

code produced by the FSCAN compiler. The FSCAN language and the LR

style processing were initially specified by DeRemer (3].

t In this report we refer to the 1966 standard.

-2-

2. THE LANGUAGE

The FSCAN language (henceforth referred to simply as "FSCAN") was

designed to allow the specification of a complex lexical analyzer, suchI

as that required by FORTRAN, in as concise and understandable a manner

as possible.

2.1 Programs and Procedures

An FSCAN program consists of a single FSdAN procedure (within which
may be defined additional procedures). An FSCAN procedure specifies in

an extended BNF-style notation a grammar that describes a left-to-right

pass over the source text. Within the grammar, actions such as the

generation of a token are indicated.

Since it was not considered useful to allow a lexical analyzer to

quit before reaching the end-of-file of the input stream, or to allow it

to continue operating beyond the end-of-file, the writer of an FSCAN pro-
gram is not allowed to reference the end-of-file. Instead, the procedure

that is the FSCAN program, i.e.,

SCANNER LEXANLYZ

LEXANLYZ - ...

END LEXANLYZ.

is conceptually imbedded in the following context:

LEXANLYZ* EOF

where EOF is defined to be:

EOF 4 'end-of-file' 4 'EOFTOK';

and where 'end-of-file' matches the logical end-of-file of the input

stream. EOFTOK is therefore predefined in all FSCAN programs to be the

action (see 2.4) for recognizing end-of-file in the input stream.

2.1.1 Syntax

An FSCAN procedure or "scanner" consists of a sequence of grammatical

rules delimited by the keywords, 'SCANNER' and 'END'. Following each of

these keywords is the goal symbol for the sequence of rules; this also
serves as the name of the procedure. The redundant repetition of the

gml symbol is used by the FSCAN compiler to ensure that the 'SCANNER' -
i D' pairs are matched in the way the programmer intended.

r
-3-

2.1.2 Example

SCANNER DIG:

rule_1; rule_1; ... ; rule n;

END DIG

2.1.3 Semantics

The rule indicated by the goal symbol of a procedure specifies a

finite-state stack-automaton parse of the source text which is performed

when the procedure is called. The parse is performed in a longest match

manner; namely, given the choice between finishing and parsing more of

the source text, the procedure will always continue parsing.

2.2 Rules
An FSCAN rule is either a macro rule, a variable defining rule,

or a procedure rule. The scope of r Je definitions corresponds to that

of ALGOL.

2.2.1 Macro Rules

As in a BNF rule, the left side of a macro rule is a nonterminal

while the right side is a sequence of alternatives. Each alternative

may have an associated action, and an alternative, rather than being

only a sequence of terminals and nonterminals, may contain any of a

variety of operators, in the style of regular expressions, as well as

parentheses for grouping.

2.2.1.1 Syntax
Each alternative is preceded by a single-right-arrow (). The

optional action is placed at the end of the corresponding alternative

and is preceded by a double-right-arrow (=>).

2.2.1.2 Example

TEXT - fscanregexprn => action

fscan_.reg__exprn

4 fscanregexprn => action

2.2.1.3 Semantics

A macro rule is a standard macro in that the right part of the rule

textually replaces any occurrence of the nonterminal of the left part,

when the occurrence is in an FSCAN regular expression within the scope
of the macro rule definition. A macro rule cannot be recursively defined

-4-

except through a procedure rule call. Thus in the above example, the

nonterminal, TEXT, could not appear in any of the three FSCAN regular

expressions in the right part, but the following construction would

be legal:

TEXT1 fscanreg_exprn containingTEXT2;

SCANNER TEXT2:

TEXT2 -* fscan__regexprncontainingTEXT1;

END TEXT2;

This is legal since execution time recursion is implemented, whereas

recursively defined macros without intervening procedure rule calls

would imply infinite textual expansion of the macro.

During execution of the interpreter, when an alternative has been

matched with the source text, the corresponding action, if any, is

performed. The compiler ensures at compile time that it is determinable

which action is to be performed by one character look-ahead only.

2.2.2 Variable Defining Rules

A variable defining rule is similar in form to a macro rule except

that the right side is restricted to being a single alternative. The

nonterminal on the left side names the variable being defined, in

addition to naming the regular expression on the right side, as in a

macro rule.

2.2.2.1 Syntax

The single alternative is preceded by an equal sign (=).

2.2.2.2 Example

NUM = fscan.regexprn;

TEXT NUM fscan scanner ** NUN;

2.2.2.3 Semantics

A variable is used to convey numeric information from the source

text to the FSCAN program. This feature is required to allow processing

of FORTRAN hollerith constants; e.g., 3HABC. Its semantics correspond

to those of a macro rule except that an implicit action is attached to

the single alternative of the right part. This action evaluates, as an

integer, the string matched by the right side of the variable defining

rule. The integer produced is stored as the value of the variable defined

- -- .4

-5-

by that rule. The viriable can then be used in FSCAN contexts where

integers are expected. During execution of the interpreter the integer

value is that produced.by the most recent execution of that variable's

execution action. The compiler ensures that it is always pLssible to

derive an integer from strings matched by the right part of a variable

defining rule.

2.2.3 Procedure Rule

A procedure rule is simply an FSCAN procedure, see 2.1.

2.3 FSCAN Regular Expressions (abbreviation: FRE)

2.3.1 Atomic units

The atomic units of an FRE are terminals, integers, and nonterminals.

2.3.1.1 Terminals

2.3.1.1.1 Syntax
A terminal is either a "kept-string" or a "deleted-string." A kept-

string is a sequence of characters enclosed in double quotes (") while

a deleted-string is a sequence of characters enclosed in single quotes

'). If a sharp (#) appears in the string, the sharp is ignored and

the next character is treated as the next character of the string, even

if that character is a double-quote, single-quote, or a sharp. For

terminals the strings are restricted to be of length zero, length one,

or the string of length three, eol. A length zero string matches no

character, a length one string matches the character of that string, and eol

represents the end-of-line character.

2.3.1.1.2 Examples
"illm ' 'A' 1;" 'm ,##' "#"" "EOL" 'EOL'

2.3.1.1.3 Semantics

The character of the terminal is compared with the next character

of the source text. If they match, the source text character is marked

as "kept" or "deleted", depending on whether the terminal is a kept-string

or a deleted-string. The FSCAN compiler will indicate, with an appropriate

error message at compile ime, if it is possible for a given FSCAN program

simultaneously to mark a source text character as "kept" and "deleted."

2.3.1.2 Integers

-6-

2.3.1.2.1 Syntax
An integer is a string of digits.

2.3.1.2.2 Examples

54 0 05 1234567890

2.3.1.2.3 Semantics

Integers have their usual meaning.

2.3.1.3 Nonterminals

2.3.1.3.1 Syntax
A nonterminal is a sequence of letters and digits, the first of

which is a letter.

2.3.1.3.2 Examples
A TEMP TEMPI B3B

2.3.1.3.3 Semantics

Nonterminals can name macro rules, variables, or procedure rules.
As mentioned earlier, macro rule names are textually replaced by the
right part of the macro defining rule, for which the semantics have been

described. The semantics of variable names vary according to their con-

text. If a variable is used where an integer is expected, the current
valLj of the variable is used during execution; otherwise, the right part

of the variable definition (with implicit associated "evaluation action")

textually replaces the use of the variable name. When the nonterminal
names a procedure, the appropriate procedure is called during execution.

The compiler ensures at compile time that at any point in execution, it
is determinable "rom the character presently being examined, whether to

invoke a procedure, and which one to invoke.

2.3.2 Operations

The operations used to compose FSCAN regular expressions are divided
into two types: basic operations and extended operations. Let A, B, C be
FRE's and let n be an integer i 0 or a variable.

2.3.2.1 Basic Operations

2.3.2.1.1 Syntax

Alternation : A I B I C I .

Concatenation : A B C . . .

Repetition : A*

Negation NOT A

4 -7-

2.3.2.1.2 Example

NOT ("i,"1"1;"1S"?") 'X'*

2.3.2.1.3 Semantics

An alternation successfully matches the source text if any of its

alternates does. A concatenation matches the source text if its operands

sequentially match the source text. A repetition matches an arbitrary

number (possibly zero) of its operand with the source text. The operand

of a negation is restricted to regular expressions that specify a set

of characters, all of which are kept-strings or all of which are deleted-

strings. A negation then matches any character that is not in its

operand's character set. If matched, a source character is marked as

"kept" or "deleted" if the operand character set consists of kept-strings

or deleted-strings, respectively.

2.3.2.2 Extended Operations

2.3.2.2.1 Syntax

+ A + A (A*)

? A ? E AI()

LIST A LIST B =_ A (BA)*

ELSE A ELSE B ELSE C ELSE ... A B I C -

** A** n Z A A A ... A (n times)

A ?* n = A? A? A? .. A? (n times)

Restrictions: The operands of ELSE and the first operands of ** and

?* are restricted to being the names of procedures.

2.3.2.2.2 Semantics

The semantics of the extended operations are largely determined by

those of the basic operations by which they are defined. The operators,

ELSE, **, and ?*, are only approximately equivalent to their respective

syntactic expansions, because they possess the following additional

properties:

2.3.2.2.2.1 ELSE

The ELSE construct provides a backtrack feature where if the first

operand fails to successfully match the source text, the second operand

is tried, etc. Once the final operand is invoked, match failure will

cause standard error recovery, rather than the backtract feature.

2.3.2.2.2.2 **

The only distinction between ** and its syntactic expansion

occurs when the exponent, n, is zero. In this case A**O matches the

input stream only if A would match the next character in the input stream.

Since the exponent is 0, no characters are actually matched by A, only

the check is performed.

2.3.2.2.2.3 ?*

The ?* operator provides limited backup, in the sense that, if less

than n A's have been successfully matched, the parse is backed up to the

state at which the last A (possibly no A's) has been successfully matched.

2.4 Actions

2.4.1 Syntax
Actions are either kept-strings, deleted-strings, or nonterminals.

2.4.1.1 Examples

"INT" 'REAL' CARDS RESCAN

2.4.2 Semantics

A string indicates that a token is to be output. The type of the

token output is indicated by a unique integer associated at compile time

with that string. A deleted-string action and a kept-string action in-

dicate that a deleted-token and a kept-token respectively are to be

output. For a kept-token, the sequence of kept characters that were

matched are output in addition to the token type.

A nonterminal action indicates that the sequence of kept characters

matched by that action's alternative is to be rescanned by the FSCAN

procedure named by the nonterminal. This process of rescanning is some-

times referred to as "screening."

2.5 Comments

Comments can be included at any point within an FSCAN program except

within atomic units, keywords, or operators. A comment begins with a

sharp (#) and terminates at the first end-of-line.

-9-

3. THE COMPILER

The FSCAN compiler consists of 4000 lines of standard ANSI

FORTRAN code. In addition there are two tables (both the parser and

scanner for the FSCAN compiler are table driven) that would require

straightforward and mechanical modification on machines with small

wordsizes. (See appendices C and D). Finally, there is a group of

short (1 to 5 lines) routines that are machine dependent. (See appendix

A).

On the CDC 6400 machine the complete FSCAN compiler requires

130 K octal words to process the FSCAN program that recognizes an

extended FORTRAN variant.

The FSCAN compiler contains eight processing modules that

perform the following tasks:

3.1 Lexical Analysis, Syntactic Analysis, and Tree Construction

The input is read and all syntactic errors are reported. If

the input is syntactically ccrrect, a parse tree corresponding to

the input grammar is built, otherwise processing stops after the

entire input has been scanned for syntactic correctness.

3.2 Symbol Identification

Each applied occurrence of a symbol (i.e., in the right sides of

rules) is associated with its defining occurrence (i.e., the rule in

which that symbol was defined). In addition the following errors are

detected and reported:

3.2.1 A scanner's beginning goal symbol is different from its

ending goal symbol.(probably due to improper scanner nesting

that could not be detected by the parser).

3.2.2 A nonterminal is defined by two different rules within the

same scanner.

3.2.3 No rule defines the goal symbol of a scanner.

3.2.4 A variable exponent is defined in something other than a

variable defining rule.

3.2.5 A symbol is used that has not been defined by any rule.

3.2.6 A symbol that is an alternative of an ELSE, a screening

action, or the base of ** or *?, is defined in something

other than a procedure rule.

p-10-

If any of the above errors occur, processing is halted following the

completion of the symbol identification phase.

3.3 Character Set Creation

The terminals are converted to a set containing the appropriate

character and, where feasible, set operations corresponding to FSCAN

operators are performed (i.e., '1' and 'NOT') and the operator node is

replaced by the resulting set. In addition, by propagating attribute

vectors down and then back up the tree, the following errors are

detected and reported:
3.3.1 A macro rule is recursively defined.
3.3.2 A variable exponent is used before the variable could have

received a value.

3.3.3 A 'NOT' operator is applied to something other than a character

set.

3.3.4 A terminal string other than 'EOL' consists of more than one character.

3.3.5 A rule containing a kept character is used in a context

where the kept character is associated with no token.

3.3.6 A rule generating a token is used in a context where another

token is currently being built.

3.3.7 A rule containing untokenized kept characters and a rule

producing tokens appear in the same context (either errcr-3.3.5

or error 3.3.6).

3.3.8 Non-digit characters are kept by a variable definition rule

(or by a rule used by a variable definition rule).

If any of the above errors occur, processing is halted following the

completion of the character set creation phase.

3.4 Tree Threading

The tree is converted to a directed acyclic graph by the

addition of directed edges. This additional linkage allows the LR

processing to be performed efficiently.

3.5 Code Generation

The code for a parser that will accept the user's grammar is

generated. This code is written out to a scratch file as it is

produced.

-11-

3.6 Code Verification

The parse tree is purged and the code from the scratch file is

read into memory. It is then verified that the code specifies a

deterministic machine that will halt on finite input. If the grammar

specified nondeterministic or non-halting behavior, this is reported

as an error, and processing will halt following completion of the

code verification phase. A nondeterminis. error or "action conflict"

is reported by listing the group of actions that, according to the

grammar, would have to be performed concurrently or nondeterministically.

A non-halting error is reported by indicating the action that, for certain

input, would be repetitively executed infinitely.

3.7 Code Assembly and Optimization

Address locations are compiled and assembled into the code.

Also the code is compacted by collapsing equivalent character sets into

a single character set.

3.8 Code Output

The final code is output in the form of a FORTRAN BLOCK DATA

subprogram.

-12-

4. THE OBJECT CODE INTERPRETER

The object code interpreter, in conjunction with the object code

produced by the FSCAN compiler, forms a lexical analyzer that will process

a stream of input characters and produce a stream of lexical units (tokens)

as specified by the FSCAN program that was compiled. The interpreter

is written in standard ANSI FORTRAN. In addition there is a group of

short (1 to 5 line) routines that are machine dependent (see Appendix B).

4.1 Input Interface

The stream of input characters is obtained by the interpreter

through repeated calls to the user-supplied routine, GETBUF. The

subroutine, GETBUF, has four output parameters: three formal parameters

and one array in a labeled common block:

SUBROUTINE GETBUF (IBEG,IEND, EOFFLG)

COMMON /user-defined-conimon-block/ ..., BUFFER(t), ...

BUFFER is a user-defined array containing the characters to be

sent to the scanner, with the characters stored one per word.

IBEG and IEND are integers pointing respectively to the first

and last characters in BUFFER to be sent, and EOFFLG is a logical that

is true 1ff there are no more characters to be sent. When EOFFLG is true,

the values in BUFFER, IBEG, and IEND are irrelevant.

The common block containing BUFFER must be added to the routine

EOIERR in the "Scanner Table Driver" module. The array containing the

characters must be named BUFFER.

4.2 Output Interface

The stream of tokens is obtained by making repeated calls to the

interpreter subroutine, SCANNR. SCANNR has four output parameters, all

appearing in the labeled conuon block, /TOKENC/:

SUBROUTINE SCANNR

COMMON/TOKENC/TKNTYP, KTFLAG, ITKNCH, TKNCHR(30)

-13-

TKNTYP is an integer indicating the type of the token (see

Appendix C), KTFLAG is a boolean that is true for a kept-token and

false for a deleted-token, ITKNCH is an integer indicating the number

of kept-characters in the token, TKNCHR is an array containing the kept-

characters (one character per word).

4.3 Errors Reported by the Interpreter

4.3.1 Recoverable Errors

The following recoverable errors are reported by the lexical

analyzer by generating a call of the form:

CALL SCNERR (i)

where i is an integer in the range, (1..10), indicating which error

occurred.

1. Token is too long, i.e., the number of characters marked as kept

is larger than the size of the array, TKNCHR. The default size

of TKNCHR is 30. If longer tokens are desired the interpreter

would have to be modified by increasing the size of TKNCHR and

changing the initialization of the variable MTKNCH to be the new

size.

Recovery: The token is truncated on the right.

2. Token contains erroneous characters. An erroneous character is one

that is not an element of the set of expected characters of the

state of the interpreter at the time the character was encountered.

An erroneous character is processed by the interpreter by skipping

over the erroneous character without changing the state of the

interpreter.

Recovery: Erroneous characters are marked as deleted.

3. Token to be screened contains erroneous characters

Recovery: Erroneous characters are marked as deleted.

4. Screening terminated with characters remaining in token to be

screened.

Recovery: The characters remaining in the token are ignored.

5. Erroneous characters occurred in token being screened, and screen-

ing terminated at the end of the token while skipping over erroneous

characters.

Recovery: None necessary.

-14-

6. End of input stream occurred prematurely.

Recovery: An EOFTOK token is generated.

7. Erroneous characters occurred in input stream and end of input

stream occurred while skipping over erroneous characters

Recovery: An EOFTOK token is generated.

8. End of token occurred prematurely while screening.

Recovery: Screening terminated and processing continues.

9. Erroneous characters occurred in input stream, and the end of

the characters read in by the most recent call to GETBUT reached

while skipping over erroneous characters.

Recovery: The lexical analyzer is reset to its initial state before

the next call to GETBUF.

10. The current call to GETBUF returns more characters than for which

there is room remaining in BUFFER.

Recovery: The lexical analyzer is reset to its initial state and the

previous contents of BUFFER is flushed.

4.3.2 Fatal Errors

The following fatal errors are reported by the lexical analyzer

by generating a call of the form:

CALL FTLERR (I)

where I is an integer in the range, (1..2)

1. The "call" stack overflowed.

To fix this error, the FSCAN program should be rewritten to generate

less procedure-call nesting at run-time. Alternatively, the size of

the array, CSTACK, in the labeled common block, /CSTAKC/, must be

increased, and MCSTAC must be initialized in the block data subprogram,

SCANBD, to a value corresponding to the new size of CSTACK.

2. The "keep" stack overflowed.

To fix this error, the FSCAN program should be rewritten to generate

fewer tokens within the operands of an ELSE construct or the operand

of a ?*. Alternatively, the size of the array, KSTACK, in the labeled

common block, /KSTAKC/, must be increased, and MKSTAC must be initialized

In the block data subprogram, SCANBD, to a value corresponding to the new

size of KSTACK.

-15-

5. FSCAN-SUBSET OBJECT CODE INTERPRETER

For normal (non-FORTRAN) lexical analyzers, the full power of

FSCAN is unnecessary. For these analyzers, a smaller and more efficient

interpreter is available. This interpreter can be used on the object

code produced from FSCAN programs that satisfy the following restrictions:

- Variable defining rules may not be used.

- The operators, ELSE, **, and ?* may not be used.

- Nonterminal actions may not be used.

- All characters of a token must occur in the characters returned

from a single call to GETBUF.

5.1 Input Interface

The stream of input characters is obtained by the interpreter

through repeated calls to the user-supplied routine, GETBUF. The sub-

routine, GETBUF, has one input formal parameter, NMCHRS, and two output

formal parameters, CHRBUT and EOFFLG:

SUBROUTINE GETBUT (NMCHRS, CHRBUF, EOFFLG)

DIMENSION CHRBUF(i)

NMCHRS is an integer specifying the number of characters that

should be placed in CHRBUF, one character per word. EOFFLG is a logical

that is set to be true iff there are no more characters to be sent.

When EOFFLG is true, the values in CHRBUF are irrelevant.

5.2 Output Interface

See 4.2.

5.3 Errors Reported by the Interpreter

5.3.1 Recoverable Errors

1, 2, 3. Errors 1, 2, and 6 from 4.3.1.

4. Token extends past end of the characters read in by the last

call to GETBUF.
Recovery: The lexical analyzer is reset to its initial state and

the current contents of CHRBUF is flushed.

-16-

5.3.2 Fatal Errors

1, 2. Errors 1 and 2 from 4.3.2.

3. Illegal action for the FSCAN-subset interpreter.
To fix this error, the FSCAN program should be rewritten Xo satisfy

the requirements of the FSCAN-subset. Alternatively the regular

interpreter (see Section 4) must be used instead of the subset

interpreter.

i7

-17-

6. ACKNOWLEDGMENT
The author gratefully acknowledges Frank DeRenier who initially

specified the FSCAN, language and the IR style processing of it. PTL.

-18-

References

[[1] ANSI FORTRAN. X3.9-1966, American National Standards Institute
1966.

(2] Osterweil, L. J.; and Fosdick, L. D. "DAVE - a validation, error
detection and documentation system for FORTRAN programs," Software
Practice and Experience.

(3] DeRemer, F., SVG Memos #69-72, #76-77, #80, #83-84. University of
Colorado at Boulder, Boulder, Colorado.

[4] Waite, W., Dunn, R.C., "SYNPUT - a Tool for Processing Programming
Language Syntax," SEG 78-5, Dept. of Electrical Engineering,
University of Colorado at Boulder, Boulder, Colorado 80309.

- rk

-19-

Appendix A: Machine Dependencies in the FSCAN compiler

A.1 Machine Dependent Constants

A.1.1 EOLCHR

EOLCHR in /CHARSC/ is the "end-of-line" character,.that
conceptually should be equal to an "end-of-line" read in under Al.

format, and should print an end-of-line when written out under Al

format. Since CDC does not have an end-of-line character, the null

character is made the end-of-line character for the FSCAN compiler
running on CDC equipment. The null character is left justified with

blank fill to correspond to the standard Al format for CDC FORTRAN.

A.1.2 NCHARS

NCHARS in /NCHARSC/ is the number of distinct characters in the

character set of the machine. For the CDC 6400 implementation, NCHARS

is 64.

A.2 Machine Dependent Primitives

A.2.1 INTEGER FUNCTION INTGER (CHAR)

Input: CHAR contains a character stored in 1H (or Al) format.

Result: An integer between 1 and NCHARS (see A.1.2), a unique value

fc- each distinct character.

A.2.2 INTEGER FUNCTION CHRCTR (INT)

This is the inverse of the INTGER function.

A.2.3 INTEGER FUNCTION DIG (CHAR)

Input: same as INTGER

Result: If the character is a digit the result is the integer value

of the digit (0-9); otherwise the result is -1.

A.2.4 INTEGER FUNCTION IAND (11,12)

INTEGER FUNCTION IOR (11,12)

INTEGER FUNCTION INOT (11)
These functions return the result of the bitwise logical operation

of AND, OR and NOT, respectively.

A.2.5 LOGICAL FUNCTION EOFILE (ICHANL)

Input: ICHANL is a logical channel number.

Result: True iff channel ICHANL is at logical end of file.

-20-

A.2.6 SUBROUTINE ORCONS (HCONST)

INTEGER FUNCTION NHCCHR(HCONST)

Input: HCONST is a hollerith constant of the form nHc1c2.. .c n where

nis an unsigned positive integer and ci is a character.

Result: After an initial call of OHCONS, each successive call to

NHCCHR will return the next character of HCONST, in the

same format as the result of CHRCTR. Thus the ith call to

NHCCHR will return c i , stored in Al or 1H format. For i > n,

the result of the ith call to NHCCHR is undefined.

A.2.7 SUBROUTINE TIMMES (ICHANL)

This subroutine prints a message indicating the :urrent time

and date, to the logical channel, ICHANL.

A.2.8 SUBROUTINE Ir4IETM

SUBROUTINE ENDETM (EXCTIM)

Result: EXCTIM is a real, set to be the number of seconds of CPU

execution time that have elapsed since the most recent call

to INIETM.

A.2.9 INTEGER FUNCTION LRS (IVAL, ICOUNT)

INTEGER FUNCTION LLS (IVAL, ICOUNT)

LRS and LLS return the logical shifit (end-off, zero-fill),

right and left respectively, of ICOUNT binary positions of the value,

IVAL.

A.3 Table Generation

Table generation is performed by the "Print Final Tables"

module which contains the one subroutine, PTABL2. The final table

(object code) is printed out in the format described in Appendix C.

If a different machine requires another table format, the FORMAT

statements of PTABL2 would have to be appropriately modified.

A.4 Character Sets

Character sets are implemented as bit vectors. This implementation

is encapsulated in the "Character Set" module. CSET in /CSETCM/ is an

array of character-set bit-vectors. NBSPWD is the number of bits per

word. NWSPCS is the number of words per character set, whose value

-21-

is the first dimension of CSET. The value of NWSPCS must satisfy the
condi tion,

NWSPCS * NBSPWD 2 NCHARS + 2

otherwise a system error is reported.

In the CDC 6400 implementation, NBSPWD is 59 and NCHARS is 64,

so NWSPCS is set to be 2. Only 59 of the 60 bits in a word on the

6400 are used, because the CDC choice of l's complement representation

of integers can cause a bit vector with all bits set (-0) to be confused

with a bit vector with no bits set (+0).

-22-

Appendix B: Machine Dependencies in the FSCAN object code interpreter.

The following machine dependent primitives are required:

1. INTEGER FUNCTION INTGER (CHAR)

2. INTEGER FUNCTION CHRCTR (INT)

3. INTEGER FUNCTION DIG (CHAR)

4. LOGICAL FUNCTION EOFILE (ICHANL)

5. SUBROUTINE OHCONS (HCONST)

6. INTEGER FUNCTION NHCCHR (HCONST)
7. INGEGER FUNCTION LRS (IVAL, ICOUNT)

8. INTEGER FUNCTION LLS (IVAL, ICOUNT)

These routines are described in Appendix A.

L.

-23-

Appendix C: Scanner tables and accessing primitives.

For the purpose of interfacing the lexical analyzer produced from

an FSCAN program with the parser that uses the tokens generated, the

FSCAN compiler outputs a FORTRAN block data subprogram, TKTPBD, in

which each token specified in the FSCAN program is initialized to

the integer value that will be output by the lexical analyzer when

that token is generated.

The object code produced by the FSCAN compiler is in the form

of tables stored in a block data subprogram named STBLBD. Since the
FSCAN compiler uses a scanner produced by the FSCAN system, such a block

data subprogram appears in the source code for the FSCAN compiler.

For storage efficiency the tables are packed, and since

transportation to machines with different word sizes could require

different packing formats, the object code interpreter accesses the

tables only through accessing primitives. In this way, if the tables

are reformatted only the accessing primitives need be correspondingly
modified. There is one accessing subroutine that modifies a value in

the table and seven accessing functions. The subroutine is SETEXP.

The seven functions are: IN, AKTYPE, AKBITV, CALLAK, VALLOC, NEXTAK,

and EXPVAL, where IN returns a logical and the rest return an integer.

The tables actually consist of three arrays, EXPONT, BTVCTR,

and AKSHUN, appearing respectively in the common blocks, /EXPTCM4/,

/BTVRCM/, /AKSHC/.

Each element of the EXPONT array contains an integer value,

where the i'th EXPONT is referenced by the function call EXPVAL (i),
and where the i'th EXPONIT is assigned the value NUM by the subroutine

call CALL SETEXV (i,NUFI).

Each element of the BTVCTR array contains N single bit items,

where N = 2 + NCHARS (see A.1.2). The V'h item of the J'th element

of BTVCTR is tested by the function call IN(j) where IN returns

.TRUE. 1ff the item is 1 (i.e., the bit is set).

-24-

Each element of the AKSHUN array contains five integer values,

accessed by the routines, AKTYPE, AKCSET, CALLAK, VALLOC, and NEXTAK,

where,for example, the AKTYPE of the i'th element of STATE is referenced

by the function call AKTYPE (i). The space required for the

AKTYPE, AKCSET, CALLAK, VALLOC, and NEXTAK fields is 5 bits, 10 bits,

11 bits, 11 bits, and 11 bits,respectively.

In the CDC 6400 implementation the arrays are formatted as follows:

(Note: The CDC 6400 has 60 bit words, with the bits labeled 0 to 59

from left to right).

EXPONT: Each value is stored in a single word in standard,

binary integer format.

BTVCTR: As N = 66, each BTVCTR element consists of two words.

Items 1 to 59 are stored in bits 0 to 58 of the first word. Items

60 to 66 are stored in bits 0 to 6 of the second word. Bit 59 of the

first word and bits 7 to 59 of the second word are always 0.

AKSHUN: Each element of AKSHUN consists of one word, where each

of the five items occupies 12 bits, in the order, AKTYPE, AKCSET, CALLAK,
VALLOC, NEXTAK. Thus, AKTYPE is stored in bits 0-11, AKCSET in bits

12-23, CALLAK in bits 24-35, VALLOC in bits 36-47, and NEXTAK in bits

48-59.

-23-

Appendix C: Scanner tables and accessing primitives.

For the purpose of interfacing the lexical analyzer produced from

an FSCAN program with the parser that uses the tokens generated, the
FSCAN compiler outputs a FORTRAN block data subprogram, TKTPBD, in

which each token specified in the FSCAN program is initialized to

the integer value that will be output by the lexical analyzer when

that token is generated.

The object code produced by the FSCAN compiler is in the form

of tables stored in a block data subprogram named STBLBD. Since the

FSCAN compiler uses a scanner produced by the FSCAN system, such a block

data subprogram appears in the source code for the FSCAN compiler.

For storage efficiency the tables are packed, and since

transportation to machines with different word sizes could require

different packing formats, the object code interpreter accesses the

tables only through accessing primitives. In this way, if the tables
are reformatted only the accessing primitives need be correspondingly
modified. There is one accessing subroutine that modifies a value in

the table and seven accessing functions. The subroutine is SETEXP.

The seven functions are: IN, AKTYPE, AKBITV, CALLAK, VALLOC, NEXTAK,
and EXPVAL, where IN returns a logical and the rest return an integer.

The tables actually consist of three arrays, EXPONT, BTVCTR,

and AKSHUN, appearing respectively in the common blocks, /EXPTCM/,

/BTVRCM/, /AKSHCM/.

Each element of the EXPONT array contains an integer value,'

where the i'th EXPONT is referenced by the function call EXPVAL (i),
and where the i'th EXPONT is assigned the value NUM by the subroutine

call CALL SETEXV (i,NU1).

Each element of the BTVCTR array contains N single bit items,

where N - 2 + NCHARS (see A.1.2). The V'jh item of the j'th element

of BTVCTR is tested by the function call N(1,j) where IN returns

.TRUE. 1ff the item is 1 (i.e., the bit is set).

-24-

Each element of the AKSHUN array contains five integer values,
accessed by the routines, AKTYPE, AKCSET, CALLAK, VALLOC, and NEXTAK,
wherefor examplethe AKTYPE of the i'th element of STATE is referenced

by the function call AKTYPE (i). The space required for the

AKTYPE, AKCSET, CALLAK, VALLOC, and NEXTAK fields is 5 bits, 10 bits,

11 bits, 11 bits, and 11 bits,respectively.

In the CDC 6400 implementation the arrays are formatted as follows:

(Note: The CDC 6400 has 60 bit words, with the bits labeled 0 to 59

from left to right).

EXPONT: Each value is stored in a single word in standard

binary integer format.

BTVCTR: As N = 66, each BTVCTR element consists of two words.

Items 1 to 59 are stored in bits 0 to 58 of the first word. Items

60 to 66 are stored in bits 0 to 6 of the second word. Bit 59 of the

first word and bits 7 to 59 of the second word are always 0.

AKSHUN: Each element of AKSHUN consists of one word, where each

of the five items occupies 12 bits, in the order, AKTYPE, AKCSET, CALLAK,

VALLOC, NEXTAK. Thus, AKTYPE is stored in bits 0-11, AKCSET in bits

12-23, CALLAK in bits 24-35, VALLOC in bits 36-47, and NEXTAK In bits

48-59.

-25-

Appendix D: FSCAN compiler parser tables.

The FSCAN parser tables were produced from the tables generated

by the SYNPUT parser generating system [4]. Their format corresponds to

the tables described in Appendix C, where the array PRSBTV corresponds

to the array BV, and the array PRSTAB corresponds to the array STATE.

In addition, in the parser tables the values, NDRSET, NLXEME, and

NPCMND are made available through the common block, /PTCONC/, where

NDRSET is the number of elements in the PRSBTV array, NLXEME is the

number of items in a PRSBTV element, and NPCMND is the number of

elements in the PRSTAB ARRAY.

The accessing functions are DIRSET, PARSOP, PARDST, AND PDATUM,

corresponding to IN, AKTYPE, AKCSET, and CALLAK respectively. Thus,

DIRSET returns a logical and the rest return an integer.

In the CDC 6400 implementation the arrays are formatted as follows:

PRSBTV: There are 23 items, which are stored in bits 0-22.

PRSTAB: PARSOP is stored in bits 43-46, PARDST in bits 47-50, and

PDATUM in bits 51-59.

-26-

Appendix E: Syntax of FSCAN programs

PROGRAM - SCANNER '.' ;
SCANNER

* 'SCANNER' GOALSYMBOL ':' (RULE ';') + 'END' GOALSYMBOL;

RULE

* NONTERMINAL ('.' REGEXPRN('=>' ACTION)?)+
+ VARIABLE '' REGEXPRN

SCANNER ;

REG EXPRN -* REG TERM 1st '1'

REGTERM + REGPHRASE + ;

REGPHRASE - REGFACTOR ('LIST' REGFACTOR) ? ;

REGFACTOR

REGPRIMARY ('*s'1'+1'?')?

+ 'NOT' REGPRI4ARY ;

REGPRIMARY

+ '(' REGEXPRN ? ')'

- tONTERMINAL list 'ELSE'

) NONTERMINAL ('**I'?*') EXPONENT

+* TERMINAL ;

ACTION - SCREENER I TERMINAL ;

EXPONENT -) VARIABLE I '<INTEGER>' ;

GOALSYMBOL '<NAME>' ;

NONTERMINAL '<NAME>' ;

VARIABLE * '<NAME>' ;

SCREENER 4 '<NAME>' ;

TERMINAL '<KEPT STRING>' I '<DELETEDSTRING>' ;

Note: "A?" is equivalent to "(Ale)"

"A list B" is equivalent to A(B A)*

FEW.- .-. "-'-

-27-

Appendix F:

In this appendix an example of a complete FSCAN program is

presented. This program specifies a lexical analyzer for the FORTRAN

dialect accepted by the CDC FTN compiler. The program appears on the

next seven pages.

-28-

SCANNER FC
FC ->(ULSTMT/COMMENT)*

ULSTMT -> STHT CSTMT?*19 "EOL" -> FORTRANSTMT
BSTMT ->NOT('C"l/"'*l) KC**71 DC*
SCANNER CSTI4T

CSTHT -> *EOL' SBLANK**5 NOT(' -/-0-) BSTMT
SCANNER SBLANK:

SILANK -> ' ' !END SBLANK ;END CSTMT

COM14ENT -> (C'*V DC* 'EOL'
SCANNER DC:

DC -> NOT(EOL') ?END DC
SCANNER KC:

KC ->NOT("EOL") ;END KC

-29-

SCANNER FORTRANSTMT:,
FORTRANSTMT -> LABELF BLANKCF C

(STMlT ELSE NULL) TEXT EOS
END FORTRANSTMT

LABELF -> KC**5 ->SCANLBL

SCANNER SCANLBL
SCANLBL -> (' '*) LABEL?
END SCANLBL

LABEL ->DIG (DIG/' 0)* >"DCONST";

BLANKCF - P'
-> NOT (/0) >'EOS' ;IEOS USED AS 'ERROR-TOKEN'

SCANNER STMT:
STMT

-(BLOCKDATA/SUBROUTINE/FUNCTION/EXTERNAL/DIMENSION

/EQUIVALENCE/CONTINUE)
-IMPLICIT ((DATATYPE PARENS) LIST COMMA)
-(FEND/RETURN) EOLCHK
-TYPE? DATATYPE (FCN ELSE NULL) NAME PARENS? (EOLCHK/COMMA)
-DATA NAME PARENS? (COMMA/SLASH)
-COMMON (SLASH/NAME)
-DO LABEL NAME EQUALS (NAME/ICONST) COMMA
-IF PARENS ((ABEL LIST COMMA) / (STMT ELSE NULL) EQTRAP)
-ASSIGN LABEL TO NAME
->GOTO (LABEL

/(NAME COMMA?)? PARENS (COMMA NAME)?) EOLCHK
-(CALL/PROGRAM) NAME PARENS? EOLCHK
-(STOP/PAUSE) OCONST? EOLCHK
-(READ/WRITE/PRINT/PUNCH) IOREF
->(REWIND/BACICSPACE/ENDFILE) (ICONST/NAME)
-FORMAT FORMATSPECIFICATION EOLCHK
-LEVEL ICONST COMMA
-(ENCODE/DECODE) PARENS? EQTRAP
->ENTRY NAME EOLCHK

EOLCHK ENSURES THAT THE NEXT CHARACTER IS AN EOL,
WITHOUT PROCESSING THE EOL.

EOLCHK -> SCEOL**O;
SCANNER SCEOL :SCEOL -> *EOL' ; END SCEOL

EQTRAP CAUSES THE CURRENT ALTERNATIVE TO FAIL IF AN EQUALS-SIGN IS
THE NEXT INPUT STREAM CHARACTER, SINCE "D MATCHES NO CHARACTERS.

EQTRAP -> ('-i' '')?;

DATATYPE -> (LOGICAL/INTEGER/DOUBLEPRECISION/COMPLEX/REAL);

IOREF LPAREN (NAME/ICONST) (COMMA FORM)? RPAREN EQTRAP
-FORM (COMMA/EOLCHK)

FORK -)NAME/LABEL/SGLSTR;

END STMT;

-30-

SCANNER NULL : NULL -0;END NULL

SCANNER FCN:
FCN -> FUNCTION
END FCN;

SCANNER PARENS:
PARENS -> LPAREN (NAMLITOPSEP/PARENS)* RPAREN;
END PARENS;

SCANNER NAMLITOPSEP:
NAMLITOPSEP -> NAME/LITERAL/OPERATOR/SEPARATOR
END ?AMLITOPSEP

SCANNER TEXT:
TEXT -> (NAMLITOPSEP/LPAREN/RPAREN)*
END TEXT;

-,ltw* 1

-31-

ASSIGN >A S S I G N -> 'KASSI'

BACKSPACE -> B A C K S P A C E => KBACK'

BLOCKDATA -> B L O C K D A T A > 'KBDAT'
CALL >C A LL > °KCALL •

COMMON -> C 0 M M 0 N => 'KCOMM'
COMPLEX ->C O M P L E X - 'KCOMP'

CONTINUE -> C O N T I N U E => 'KCONT"
DATA -> D A T A => 'KDATA"
DECODE - D E C 0 D E => 'KDECO'
DIMENSION -> D I M E N S 1 0 N => 'KDIME;
DO -> D 0 > 'KDO'

IN FTN FORTRAN, "DOUBLEPRECISION P,Q,R" AND "DOUBLE P,Q,R" ARE BOTH

* # LEGAL STATEMENTS, THUS THE FOLLOWING IS REQUIRED TO RESOLVE THE
AMBIGUITY WHEN "P" IS READ.

DOUBLEPRECISION -> D 0 U B L E PRECISION?*l => 'KDOUB'

FEND -> E N D > 'KEND*
ENCODE ->EN C O D E => 'KENCO'

ENDFILE -> E N D F I L E => 'KENDF'
ENTRY -> E N T R Y => 'KENTR'
EQUIVALENCE -> E Q U I V A L E N C E => 'KEQUI'
EXTERNAL -> E X T E R N A L => 'KEXTE'
FORMAT -> F 0 R M A T 'KFORM'

FUNCTION -> F U N C T I 0 N => "KFUNC'

GOTO >G OTO 'KGOTO'

IF -> I F > 'KIF' ;
IMPLICIT -> I M P L I C I T => 'KIMPL'
INTEGER -> I N T E G E R => 'KINTG'
LEVEL -> L E V E L => "KLEVE'
LOGICAL -> L 0 G I C A L => 'KLOGI'
PAUSE -> P A U S E -> 'KPAUS'
PRINT -> P R I N T => 'KPRIN'
PROGRAM -> P R 0 G R A M => 'KPROG'
PUNCH ->P U N C H => 'KPUNC'

READ -> R E A D => 'KREAD'
REAL -> R E A L > 'KREAL'
RETURN ->R E T U R N => 'KRETU'

REWIND -> R E W I N D => 'KREWI'
STOP -> S T 0 P > 'KSTOP'
SUBROUTINE -> S U B R 0 U T I N E => 'KSUBR'
TO >TO > 'KTO'
TYPE -> T Y P E
WRITE -> W R I T E = 'KWRIT'

SCANNER PRECISION:
PRECISION -> P R E C I S 1 0 N ; END PRECISION.;

-32-

A -> 'A' (*

AK -> "A" ' *

B -> 'B' (0 *

C -> 'C' (' '*
D -> D' C''*
DK I' D" C *)
E P> EP (p *

EK ->"E"ll *

F -> F' '

FK 'I F" C *

G &> G' '
GK - > "G" ' *

H - > 'H'& ' *

K -> 'K' ''*
L -> 'L' C '*)

LK -> "L" ' ('p*)
K #> me C '*)
N ->'N' (' '*)
NK -> "IN" (' '*

o -> 'o' (' '*)

OK -> "90"1 p' 0*

p -> *'p' (' '*

Q - 'Q' C *

QK -> "Q" (' '*
R ->'R' C *

RK ->"R"ol *

S -> '5 0 ''
SK ->"S" ' '*
T ->'T' C *

TK 'I T" C *

U P> u' (0 *

UK ->"U" ' *

w - 'w' ''*

XK ->"X" C *

COMMA 0> ,0 '')- 'COMMA' ;
SLASH 0/0 I 0 C' ') ->'SLASH'

EQUALS C'n '')- 'EQUALS'

SGLSTR -> ''(A >'SGLSTR'

LPAREN - ''('')i>'LPAREN'
RPAREN - ''('')i>'RPAREN'

h~dIM

-33-

NAME ->LETTER (LETTER/DIGIT) *>"NAME"

LETTER -> ("P /~B"t/ t ic,,/ Dli PEllI /lF" /l"G" P"/*l~l
I"J"I"KI /"LI#/1"MooI "N"IlO"I /"P"l/"'Q"l/"'R"
/ "S"I"T" /t 1 U I'V" I"W" /"X" /v'Y" /"Z") (# * * ;

ODIGIT (o '* (' '*

ITO PROCESS FORTRAN CORRECTLY, SCANICONST MUST PRECEDE SCANACONST, BUT
IIN CASE BOTH FAIL, SCANICONST PROVIDES SUPERIOR ERROR RECOVERY, THUS THE
IFOLLOWING CONSTRUCT IS USED.

LITERAL ->(SCANICONSI ELSE SCANACONST ELSE SCANICONST)
* -> POINTACONST/LCONST/QUOTHCONST

SCANNER SCANACONST
SCANACONST -> ACONST ; END SCANACONST

SCANNER SCANICONST:
SCANICONST -)ICONST (LCONST/OPERATOR) ?

->EXTHCONST

->DIGIT+ EEXP SIGN? DIGIT+ => "RCONST"
->DIGIT+ DEXP SIGN? DIGIT+ => "DPCNST"

END SCANICONST

ICONST ->DIGIT+ ->"DCONST"

-ODIGIT+ B >"OCONST"

OCONST ->ODIGIT+ => 'OCONST"
ACONST ->DIGIT+I POINT DIGIT* (EEXP SIGN? DIGIT+I)? =>"RCONST"

-DIGIT+ POINT DIGIT* DEXP SIGN? DIGIT+ >"DPCNST"

POINTACONST ->POINT DIGIT+ (EEXP SIGN? DIGIT+)? =>"RCONST"

->POINT DIGIT+ DEXP SIGN? DIGIT+I => "DPCNST"
EEXP ->"E"U);

DEXP -)"D" C *
POINT ->"." C''*

SIGN ->("+11/1-") C *

HCONST ->LENGTH 'H DC**LENGTH C *)->HCONST'
EXTHCONST ->LENGTH ('H'/VL'/*') DC**LENGTH U * >HCONST'
QUOTHCONST - I'(NOTU'EOL'/'#'')/('U '#"'))+ C'U * 'HCONST'
ASTHCONST - NOT('EOL'/'*')+ C~ U *) >'HCONST'

LENGTH -DIGIT+

-34-

LCONST ->DOT M(K RIC UK EK)/(FK AK LC SIC EK)) DOT -> LCONST"
OPERATOR ->DOT LIC TIC DOT ->"RELOP"

->DOT LK EK DOT ->"RELOP"

->DOT EK QIC DOT ->"RELOP"

->DOT NIC EK DOT ->"RELOP"

->DOT GKC EK DOT u>"RELOP"

->DOT GK TK DOT ->"RELOP"I

-)DOT OK 1K DOT -'OR,

->DOT AK NK DIC DOT >'ANDl'

->DOT NIC OK TIC DOT ->'NOT' 4

>'*' (v '*e) 0*0 (' *) ->'DDLSTR'

.>SGLSTR

SLASH
-'4'(o 1'*) "> PLUS'

-> - ' '* -> MINUS'

DOT >""'')

SEPARATOR ->COMMA/EQUALS

SCANNER FORMATSPECIFLCATION
FORMATSPECIFICATION
-LPAREN (SLASH/COHMA/FIELD)* RPAREN

SCANNER FIELD:
FIELD -> HCONST/QUOTHCONST/ASTHCONST

/NHDESC/(ICONST? FORMATS.PECIFICATLON)
END FIELD

NRDESC ->DIGIT+ XIC
/DIGIT* ILAORZ DIGIT+
/SCALE? DIGIT* FEGD DIGIT+ POINT DIGIT+ m>"FIELD";

ILAORZ >(I/L/A/O/"/Z) '')

FEGD C'Fe ("F"/"E""G"o/001)0) C''*
SCALE ->MINUS? DIGIT+ PE
MINUS >"-" C' '*);

PE f> Pot (1 '*)
END FORMATSPECIFICATION

EOS -> 'EOL' ->'EOS'

END FC.

